Cell proliferation in the forebrain and midbrain of the sea lamprey.
نویسندگان
چکیده
Cell proliferation in the forebrain and midbrain of the sea lamprey (Petromyzon marinus L.) was investigated by proliferation cell nuclear antigen (PCNA) immunocytochemistry, with BrdU labeling as a complementary technique. Correspondence between proliferation regions and areas of early neuronal differentiation was also assessed using antibodies against HNK-1 early differentiation marker. The brain of late embryos shows a homogeneously thick ventricular zone (VZ) containing PCNA-immunoreactive (PCNA-ir) nuclei. In early prolarvae, several discontinuities formed by PCNA-negative cells, and differences among regions in VZ thickness, become apparent. In late prolarvae and early larvae, these differences in VZ thickness and appearance, as well as the presence of PCNA-negative discontinuities, allowed us to correlate proliferation domains and neuroanatomical regions. In larvae, the number of PCNA-ir cells in the VZs diminish gradually, although a few PCNA-ir cells are present in the ependyma of most regions. In late larvae, proliferation becomes confined to a few ventricular areas (medial pallium, caudal habenula, ventral preoptic recess near the optic nerve, and tuberal portion of the posterior hypothalamic recess). During metamorphosis there appears to be no proliferation, but in upstream adults a few PCNA-ir cells are observed in the most caudal habenula. The characteristics of the proliferative regions revealed in lamprey with PCNA immunocytochemistry show notable differences from those observed in other vertebrates, and these differences may be related to the peculiar life cycle of lampreys.
منابع مشابه
Identifying the factors affecting the reduction of Caspian lamprey population (Caspiomyzon wagneri Kessler, 1870) in Shiroud River: The need to adopt management-protection policies
The Caspian lamprey (Caspiomyzon wagneri) is one of the most important ecological and native fish species of the Caspian Sea basin. The present study was conducted to identify the factors affecting the population decline of this species in Shiroud River as one of the important habitats of fish in the southern basin of the Caspian Sea. For this purpose, three stations were selected for sampling ...
متن کاملEffect of human chorionic gonadotropin on sexual maturation, sex steroids and thyroid hormone levels in Caspian lamprey (Caspiomyzon wagneri Kessler, 1870).
The objective of this study was to determine the effect of human chorionic gonadotropin (hCG) on sexual maturation, plasma sex steroids (17β-estradiol, E2 and 17α-hydroxy progesterone (17α OHP)) and thyroid hormones (triiodothyronine, T3 and thyroxin, T4) levels in upstream - migrating Caspian lamprey. During the experiment, 36 fish (24 females and 12 males) in spring 2013 and 36 fish (24 fema...
متن کاملConcentration of Mercury in Selected Tissues of the Caspian Lamprey (Caspiomyzon wagneri) Migrants in Spawning Season
Background: Mercury (Hg) is considered a global pollutant because Hg0 which is the predominant form of atmospheric Hg resides in the atmosphere for as long as 0.5 to 2 years. Mercury has many negative effects on the reproductive, respiratory, and immune systems. Methods: In this study, 24 Caspian lampreys (Caspiomyzon wagneri) were transported to the university laboratory and then stored in ...
متن کاملInfluence of Oxygen Tension on Dopaminergic Differentiation of Human Fetal Stem Cells of Midbrain and Forebrain Origin
Neural stem cells (NSCs) constitute a promising source of cells for transplantation in Parkinson's disease (PD), but protocols for controlled dopaminergic differentiation are not yet available. Here we investigated the influence of oxygen on dopaminergic differentiation of human fetal NSCs derived from the midbrain and forebrain. Cells were differentiated for 10 days in vitro at low, physiologi...
متن کاملFgf16 Is Required for Specification of GABAergic Neurons and Oligodendrocytes in the Zebrafish Forebrain
Fibroblast growth factor (Fgf) signaling plays crucial roles in various developmental processes including those in the brain. We examined the role of Fgf16 in the formation of the zebrafish brain. The knockdown of fgf16 decreased cell proliferation in the forebrain and midbrain. fgf16 was also essential for development of the ventral telencephalon and diencephalon, whereas fgf16 was not require...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 494 6 شماره
صفحات -
تاریخ انتشار 2006